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1 Abstract 1

1 Abstract

Gurson-Tvergaard-Needleman (GTN) model is very famous as a plastic damage model for

parts with voids. The parts produced by Selective Laser Melting (SLM) process have more

voids compared to those produced by conventional methods. Therefore GTN model can be

used for describing the failure of a SLM processed part. However, GTN model introduces

unknown parameters which can not be measured by experiments. Therefore, we are trying

to obtain these parameters through data analysis in this work. During this work, data taken

from the stress-strain curve as an input and the unknown parameters are predicted by linear

regression on input data. The Stress-strain curve are generated using ABAQUS for different

combination of parameter values. Thereafter, these are divided into training set of data and

test set of data. Training set of data is used to determine the regression function and then

the determined function applied on the test set of data for prediction of unknown parameters.

The predicted data is then compared with the original data. Last but not least, the Bayesian

approach is introduced to analyse the data base and its results tell us how to supplement the

data base to yield better results.
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2 Introduction

2.1 Selective Laser Melting

Additive manufacturing is gaining its popularity day by day in the manufacturing industry due to

its efficiency in creating complex geometries. During 1980s, additive manufacturing emerged as

a new technology for manufacturing parts. However, during its initial days it could only be used

for producing prototypes to accelerate the development process. Due to a lack of reliability,

parts produced by additive manufacturing could not be used directly in the applications. In

recent times, with the advancement of technology the manufacturing sector has coped up with

a lot of the challenges associated with additive manufacturing. Currently additive manufacturing

is being used for manufacturing metal-based parts like stainless steel [1, 2, 3], Ti-6Al-4V [4, 5]

and nickel based alloys [6] for direct use. The fuel nozzle for the LEAP engine of GE Aviation

[7, 8], Lockheed’s blead detector [9], biomedical cranial and hip implants [10, 11, 12] are live

examples of parts produced by additive manufacturing for direct use. Due to these successes,

additive manufacturing has generated a lot of interest amongst researchers, industry and even

public media [13, 14, 15].

Although additive manufacturing has overcome a lot of obstacles, there are still a lot left. To use

additive manufacturing as a mainstream manufacturing technology, obstacles like part quality,

reproducibility, lack of materials and process standards must be addressed. A lot of researchers

and industrial stakeholders are trying to find a way to overcome these challenges. Modelling

and simulation can provide a lot of insight to the designers and testers in understanding the

behaviour of additive manufacturing parts. Apart from that, real world testing can be expensive

sometimes. Therefore, it is not at all feasible to conduct a test for every design change made in

the process of product development. Simulation results can give the designers an approximate

result before the testing. Also, in the case of additive manufacturing, there are a lot of process

parameters and complex physical transformations, which can make the process difficult to un-

derstand through controlled experiments. During simulation, these controlled experiments can

be done very easily.

In this work, selective Laser melting (SLM) is considered for further investigation. SLM is one

type of additive manufacturing process. This technique uses high power-density laser to fuse

the metal powder. SLM was introduced in 1995 by Fraunfoher Institute for Laser Technology in

Aachen. Now a days it has found a copious amount of applications in the field of manufacturing,

especially in light weight designing. This happened because in the field of Aerospace a lot of

complex surfaces are required to be made. Traditional manufacturing methods are not cost-

effective solution to these requirements.

In figure 1 a schematic diagram of SLM process has been presented. In the left side of the

figure, a schematic diagram of set-up is made. As can be seen, during SLM a metal powder

bed is created and a constant feed to this bed is provided. The laser beam melts the powder
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Figure 1 Left side: Schematic diagram of SLM set-up, Right side: Schematic diagram of SLM
process, see [16]

layer by layer to create the final product. In the right side, a schematic diagram of the melting

process is presented.

As can be understood from the nature of process that there will be process induced voids in the

parts produced through this method. A lot of works are being done to make the void fraction

lesser by controlling the process parameter, see [17] for an example. However, there are very

few studies about the damage mechanism of the SLM products. In this work a ductile damage

constitutive model is implemented in parts produced by SLM.

2.2 GTN model

For modelling the damage of the parts produced by SLM process Gurson-Tvergaard-Needleman

(GTN) model is implemented in this work. GTN model is a well known damage model for mod-

elling the yield surface, which considers the voids at the micro level. This model got its initial

shape through the work of Gurson in 1977. He proposed a model for growth of void in an ideal

plastic material, see [18]. Later Tvergaard and Needleman did further modifications to this

model, see [19]. In honour of their work, this model is named after them and is known as GTN

model. Although it is very useful to use this model for describing the plastic behaviour because

of its inclusion of the micro-mechanical effect of the material, this model has a significant dis-

advantage. This model need 12 parameters and all of them can not be measured directly by

experimental method. Usually this parameters are obtained by comparing the load displace-

ment curve of simulation and experiment. Lot of parameter optimization methods are proposed

in order to find these parameters for different applications. In [20] a gradiant based method is

proposed to minimize the least square functional to predict the force-necking of stE690 steel

during tensile test. In [20] an approximated inverse function is generated from the load dis-
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placement curve to predict the material parameters in a Small Punch Test (SPT).

The GTN model is a widely used model for modelling of ductile fractures. This model includes

the micro-mechanical effect in the description of yield surface. This model also exhibits hy-

drostatic stress dependence in strain softening due to presence of voids in micro level. This

particular phenomenon separates this model from the classical plasticity. Ductile damage in

metals can be classified into following phases: void nucleation, void growth, strain localisation

and necking between voids, coalescence and fracture. In figure 2, all these phases of ductile

Figure 2 Different phases of ductile fracture, see [21] for reference

fracture are shown.

To include the micro mechanical effect of voids the isotropic Von-Mises yield potential is modi-

fied as following.

Φ =

(
σv
σy

)2

+ 2q1f
∗ cosh

(
3

2
q2
σm
σy

)
− (1 + q3f

∗)

= 0

With σv =

√
3

2
· Sij · Sij and σm =

1

3
· σkk (2.1)

where Φ is the yield potential, σv is the Von-Mises equivalent stress, Sij is Cauchy stress,

σy is the yield or flow stress of the material and σm is the hydrostatic stress. In this case,

the damage variable is the volume fraction of voids or the porosity, termed as f∗. In [22]

Tvergaard introduced the model parameters q1, q2 and q3 in order to fit the model results with

the experimental data.

As shown in figure 2, during the ’necking between voids’ phase there is interaction between the
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voids. Due to these interactions the internal strength is decreased. In order to incorporate this

phenomenon a modified volume fraction of voids f∗ is introduced instead of original volume

fraction of voids f . The main idea of this modified formulation is that after a certain value the

volume fraction of voids changes. As mentioned in [23], f∗ can be expressed as follows,

f∗(f) =

f, f ≤ fc
fc + κ(f − fc), f > fc

(2.2)

κ =
f∗u − fc
ff − fc

where fc is the critical volume fraction after which the voids start interacting. Therefore before

this value there is no modification the volume fraction of voids, i.e. f∗ is analogous to f . ff is the

volume fraction of voids at macroscopic failure. After the interaction of voids starts, f∗ = f∗(ff ).

κ introduced in the formulation serves the purpose of an accelerating factor.

For the sake of calculation volume fraction of voids is prescribed for the material before the

plastic flow. Due to local stress and strain these voids will grow and also new voids will be

created. The void evolution law considers an initial volume fraction of voids f0, describes the

growth of voids based on the assumption of incompressibility of the material and the creation of

new voids through fnucleation. Strain controlled the fnucleation. Therefore the evolution of volume

fraction of voids can be written as

ḟ = ḟgrowth + ḟnucleation. (2.3)

Void growth is ruled by the incompressibility of materials surrounding the voids. Thefore, con-

sidering the mass balance following can be written.

ḟgrowth = (1− f)ε̇plkk (2.4)

where ε̇plkk is the volume dilation rate. For the nucleation of voids a statistic Gaussian distribution

is assumed.These new voids have a volume fraction of fN as per assumption. These arise at

the mean equivalent strain of εN with a specific standard deviation SN . Therefore as per [23],

it can be written that

ḟnucleation = A.¯̇εpl, (2.5)

A =
fN

SN .
√

2π
. exp

[
−1

2

(
ε̄pl − εN
SN

)2
]
.

Here ε̄pl is the equivalent plastic strain. Void nucleation is proportional to the equivalent plastic

strain and total available nucleation density fN . Finally when the volume fraction of voids reach

the value of ff , the voids coalescence and a meso-crack initiates. In GTN model, localization

of plastic strain is coupled with the final failure.
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3 Method Implementation

In this chapter a data analysis methodology is proposed to optimize the unknown parameters

of GTN model.

3.1 Internal parameters

Although GTN model is very useful to describe the ductile fracture, it has a certain disadvan-

tages as already pointed out in section 2.2. It has 12 unknown parameters in the mathematical

formulation, which needs to be determined. Some of those can be determined by experimen-

tal methods but most of them has to be found out through an iterative method. In this work

11 parameters are considered as unknown and the parameter matrix P, containing these 12

parameters can be represented as

P = pi = (σ0 ε0 q1 q2 q3 f0 fc ff fN εN SN )T . (3.1)

Referring to equation 3.1, σ0 and ε0 can be filtered out as the parameters which can be mea-

sured directly from the experiments. f0 or the initial volume fraction of the voids can be mea-

sured from the relative density. The standard deviation SN has a very little influence on the

outcome of model. As per Abaqus manual section 1.1.9 the value of SN can be taken as 0.05.

q1 and q2 have similar kind of influence on the model outcome and therefore it is sufficient to

vary only one of them. As per the Abaqus documentation, q3 can be expressed as square of

q1, i.e. q3 = q1
2. Therefore, in this work only q1 is chosen as unknown in this work. The value of

q2 is taken as 1.0 referring to the Abaqus documentation. Finally, as a summary of the above

paragraph it can be concluded that the Parameter matrix further reduces to POpt. This contains

only the parameters to be optimized.

POpt = ( q1 fc ff fN εN )T . (3.2)

3.2 Parameter optimization through data optimization method

For determination of the internal parameters a lot of methods are prescribed in literature. See

[20], [24] and [25], where different optimization algorithm is adopted to predict these internal

parameters of GTN model. In this work, the response surface method is implemented to predict

these internal parameters.

Within the response surface method, machine learning is used as a tool. The machine learning

is a very popular tool in recent years for optimization. It has a lot of other scopes as well.

Machine learning is the process of decision making by machines through analysis of past data.
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Input

x1
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yn = f(xn)
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y2
.
.
yn

1

Figure 3 Block diagram of a simple machine learning problem, where the input and output data
is known and function relating the input and output, data is unknown. this unknown
function is shown inside the black box

A simple example of a machine learning problem is shown in figure 3. In every problem we will

have a set of input data (x1, x2, ..., xn) and a set of output data (y1, y2, ..., yn) as can be seen

in figure 3. These data can be a scalar or a vector. These provided data are called the training

set of data. Using statistical methods, the machine learning algorithm predicts the function that

converts the input data into output data. As per figure 3, f(xn) shown in the black box is the

function to be predicted through the machine learning algorithm.

Machine learning problems can be broadly classified into two types. They are :

1. Classification problem: This kind of problem deals with the situations where we have

to classify between two or more objects. For an example, recognition of alphabets in the

handwritten note is a classification problem. In this particular case, the training set of

data can be the geometry of the alphabets in a known font (e.g. times new roman). An

example of a handwritten note is shown in figure 4.

Figure 4 Example of classification problem: classifying the handwritten alphabets, see [26] for
reference
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2. Regression problem: This kind of problem deals with a situation where we need to

interpolate the data from present and past in the future from the available data. For an

example, the prediction of path of a robot arm from the movement of joints is a regression

problem. In this case, the training data set could be the joint position and arm position

from the past experience.

In this work, the input data are the stress-load curve. So each input is a vector and the output

parameter is the parameters of POpt. A machine learning algorithm is proposed to predict the

input parameter from any stress-strain curve. This problem can be categorized as a regression

problem.

3.3 Data Generation

In this work, a rod of diameter 1.25 mm and length 20 mm is created using Abaqus. However,

the simulation model size is different compared to the experimental specimen. This work is only

trying to proof the feasibility of the proposed method. Material is selected as 316L steel with

GTN model implemented as its failure model. The values of Parameters from POpt is chosen

from table 1.

Parameter Lower limit Upper limit Set of values

q1 1.0 1.6 [1.0, 1.2, 1.4, 1.6]
εN 0.1 0.4 [0.1, 0.2, 0.3, 0.4]
fN 0.01 0.04 [0.01, 0.02, 0.03, 0.04]
fC 0.1 0.16 [0.1, 0.12, 0.14, 0.16]
fF 0.2 0.5 [0.2 0.3 0.4 0.5]

Table 1 Range of parameters of POpt taken for simulation

It can be calculated that a total of 1024 combinations of values can be taken as an input from

table 1. However due to numerical problems, some of the simulation results are deleted and

finally 960 simulation results are taken into account. Among these simulation results, 80%

results are randomly chosen as training data set. These data are used to establish a relation

between the input data, i.e. stress values at reference points and the the desired output, i.e.

the parameters. After finding the relation, it is applied to the stress result of test data set and

the obtained value of parameters of POpt are then compared with the values obtained from

the Abaqus simulation result to check the validity of the established relation. This process is

explained in detail in section 3.4 and section 3.5.
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Start

Creation model in ABAQUS

Selection of GTN parameter values as per table 1

Data generation

Data analysis method

1

Figure 5 Block diagram for data generation process

3.4 Data analysis method

As mentioned in section 3.2, Response surface methodology (RSM) is used as a tool for anal-

ysis of data in this work. RSM was first introduced by George E. P. Box and K. B. Wilson

in 1951. This is recognized as a statistical method that explores for a relationship between

explanatory variables and one or more response variables. Within RSM, a sequence of de-

signed experiments are performed to obtain an optimal relationship. Box and Wilson proposed

a second-degree polynomial for approximation. In this work, a machine learning algorithm is

used as an approximation method. In our case, the stress values at fixed reference point are

explanatory variables and the GTN model parameters are response variable.

Therefore, the machine learning algorithm within the RSM takes the stress-strain curve as input

and the values of parameters of POpt as output data. The algorithm works in two main steps for

prediction of the relation between the input and output. In the first step, it predicts the relation

between the stress-strain and first three parameters from POpt, i.e. q1, εN and fN . In the

second step, the training data is divided into categories based on the value of q1. We have

four possible values of q1 in this work as per table 1. Therefore, we will have four categories

of training data. Finally a relation is established between the stress-strain curve and last two

parameters of POpt, i.e. fc and ff for each category. Figure 6 shows a rough flow of operations

explained above.
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Data generation

Prediction of q1, εN and fN
Categorization of

data set based on q1 values

Prediction of fC and fF
for each categories

Comparison of prediction values
and test data set

comparison of prediction values
and test data set
for each categorie

1

Figure 6 Basic structure of the proposed machine learning algorithm

Prediction of q1 , εN and fN : In this step the input is that part of the stress-strain curve, which

is responsible for void nucleation. In this work, only four points are chosen from the stress-

strain curve. These points range from 8th to 11th point of the curve. Therefore according to

figure 3, it can be said that the input in this case is a vector containing four points, which can

be expressed as following:

xn =


S8

S9

S10

S11

 =


xn1
xn2
xn3
xn4

 . (3.3)

Where S8, S9, S10 and S11 are the 8th , 9th, 10th, 11th points of the stress-strain curve. The

outputs yn shown in figure 3 are taken as a functions of q1, εN and fN . In this work three

functions are chosen, as shown in equation 3.4.

Y1 = q1 + 2εN + 20fN ,

Y2 = q1 + 4εN + 20fN ,

Y3 = q1 + 2εN + 40fN . (3.4)

From these functions Yn, the parameters q1, εN and fN can be retrieved using the following

formulas.

q1 = 3Y1 − Y2 − Y3
εN =

(Y2 − Y1)
2

fN =
(Y3 − Y1)

20
(3.5)
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Thereafter, the following function is proposed for relating the Yn and xn.

Yn =
4∑

i=1

CiXni +
4∑

i=1

C(i+4)X
2
ni +

4∑
i=1

4∑
j=1

C(4i+j+3)XniXnj

(3.6)

Using MATLAB, the coefficients Cn (n=1, 2, ..., 14) is found out. Training data set is used

as a reference. Thereafter, putting the value of these coefficients the relation Yn=f1(xn) is

established. This function is then applied to the whole data set to find the predicted Yn, which

can referred to as YnPr (n= 1, 2, 3). From the values of YnPr , the predicted values of q1, εN
and fN are calculated using 3.5, which can be referred to as q1Pr , εNPr and fNPr . This predicted

data is then compared with the original data and the relative error is calculated, which can be

expressed by means of the following equation.

Relative Error of {q1, εN , fN} =
{q1, εN , fN}Pr − {q1, εN , fN}

{q1, εN , fN}
(3.7)

Finally the cumulative probability of having a prediction with a permissible error is calculated for

the training and test data. In this work, the permissible relative error is taken as 0.25. For each

parameter this probability is calculated separately. This is done using the following formula.

Cumulative probability

of data set
=

Number of data set with relative error ≤ Permissibleerror
Number of elements in data set

(3.8)

From these probabilities, it can be understood that how effective the machine learning algorithm

is in predicting the parameters (q1, εN and fN ) from a stress-strain curve.

Prediction of fC and fF : During prediction of fC and fF , the data set is categorized according

to the value of q1. Since in this work all the data is taken from the table 1, 4 categories are

created. This categorization is done separately for training and test data set. For each cate-

gory prediction algorithm is run separately. Since fC and fF are the related to the failure of

the material, therefore as an input parameter a part of stress-strain curve is chosen, which is

responsible for failure of the material. In this work, three points from the curve are chosen for

this step. These points are in the range of 15th to 17th in the stress-strain curve. As before, the

input data can be expressed as following.

xn =


S15

S16

S17

 =


xn1
xn2
xn3

 , (3.9)

where S15, S16 and S17 are the 15th, 16th and 17th points respectively in the stress-strain

curve. The output in this case are functions of fC and fF . These functions can be expressed
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as following.

Y1 = fC + 3fF ,

Y2 = fC + 6fF . (3.10)

From these functions fC and fF can be retrieved using the following formulas.

fC = 2Y1 − Y2,
fF =

Y1 − Y2
3

.

(3.11)

The proposed function, relating Yn and xn for the case of prediction of fC and fF is as follows.

Yn =

3∑
i=1

CiXni +

3∑
i=1

C(i+4)X
2
ni +

3∑
i=1

4∑
j=1

C(3i+j+2)XniXnj

(3.12)

As in the case of prediction of q1, ε and fN , in this case also the coefficients Cn (n= 1, 2, 3,

..., 9) are found taking the training data as a reference using MATLAB. Thereafter, using this

values in equation 3.12 the function relating Yn and xn can be determined. Using that function

the value of output Yn is calculated and thereafter using equation 3.11, the values of fC and fF
is predicted for training and test dataset. As comparison of original and predicted data, relative

error is calculated and the cumulative probability of having a relative error less than or equal to

25% is calculated for each parameter for each category.

3.5 Statistical analysis for model validation and improvement

In this section, statistical tools are used to validate the above mentioned data analysis method.

An effort to relate the results of two different steps of the above mentioned machine learning

algorithm is also made in this section. Therefore, the set Ω = { fC , fF } is assumed the set of

output parameters and the set Φ = {q1, εN , fN } is the set of input parameters. We calculate the

probability of the parameters from Ω for given values of the parameters from Φ. In mathematical

terms, this probability can be termed as posterior probability and can be represented as

P(Ω|Φ) = P(fC or fF |q1, εN , fN ). (3.13)

One example of the posterior probability can be P(fC = 0.1|q1 = 1.0, εN = 0.1, fN = 0.01).

Since during the data generation process, values are taken according to table 1. Therefore, it

can be understood that there are 256 posterior probabilities for fC for different combinations of

fC , q1, εN and fN . Same number of posterior probabilities are there for fF . These probabilities

are calculated from the generated data and from the predicted results separately. Finally a



3 Method Implementation 13

relative error of posterior probability for the predicted value with respect to the generated data

is calculated. All the dataset, for which the relative probability is less than 25% predicted values

are reported. For all other cases, more additional data has to be created. As a continuation

of this work 5024 data are created for further application of the same method on the data for

which the relative error of posterior probability is greater than permissible error. In this work

permissible error is taken as 0.25. An iterative process for finding the correct prediction with

increased number of training data set will be part of further work. In this work, results for one

iteration loop is shown. A brief description of the whole process is given in figure 7 in the form

of a flow chart.

Start

Data Generation process

Machine learning Algorithm

Calculation of relative error in the posterior probability
of the predicted dataset with respect to the original dataset

relative error
≤ 25%

Additional data
Generation

Reported Data

Yes

No

1
Figure 7 Flow chart for the whole Optimization process
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4 Results

In this section, a data set of 960 data is generated in ABAQUS. The data analysis method

is implemented on the generated dataset and cumulative probabilities for each parameter is

calculated. Thereafter relative error of Posterior probability is calculated.

4.1 Data Generation

As mentioned in section 3.3, a model of Φ 1.25mm × 20mm rod is created in Abaqus, which

shown in the figure 8 in its reference configuration, i.e. without any deformation. The material

of this rod is 316L steel. GTN model is implemented as the failure model of the material. The

parameters of POpt are chosen from table 1. This rod is subjected to the tensile test. In this

Z

Y

X

X

Y

Z

Figure 8 Model of rod in reference configuration in Abaqus

section the result are shown for only one combinations out of a total of 960 combination.

As the first combination of parameters q1= 1.0, εN= 0.1, fN= 0.01, fC= 0.1 and ff= 0.2 are

chosen. In figure 9, the Von-Mises stress after the tensile test is shown. The stress varies from

4.775 × 10−4 to 1.076 × 10−3 MPa. In figure 9, the distribution of void volume fraction after the

tensile test is shown. The void volume fraction varies from 1.016 × 10−3 to 1.701 × 10−2. In

figure 10, the distribution of growth of void volume fraction after the tensile test is shown. The

value varies from 5.635 × 10−7 to 6.235 × 10−3. In figure 10 the nucleation of void volume

fraction after the tensile test is shown. The value varries from 1.635 × 10−5 to 9.772 × 10−3.

Figure 13 shows the evolution of Void volume fraction with respect to time.

960 times simulation is run and the data set is generated. In figure 14 the stress-strain curves

for all 960 combinations are plotted. As mentioned in section 3.4, the zone marked by red

rectangle shown in figure 14 are taken as the basis for predicting q1, εN and fN and the zone
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Figure 9 Distribution of stress in the deformed rod

Figure 10 Distribution of Void volume fraction in the deformed rod

Figure 11 Distribution of growth of Void volume fraction in the deformed rod

Figure 12 Distribution of growth of Void volume fraction in the deformed rod
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Figure 13 Evolution of void volume fraction with respect to time
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Figure 14 Stress-strain curve

marked by yellow rectangle shown in figure 14 are taken as the basis for predicting fF and fC .

4.2 Data Analysis Method

The Data Analysis method described in section 3.4 is implemented in the generated data. As

a first step q1, εN and fN is predicted. The cumulative probability is calculated for the training

data and test data separately as shown in equation 3.8. A variation of cumulative probability

of correct prediction with respect to different permissible relative error is shown for training

data and test data separately in figure 15 and 16 respectively. As can be seen in the figures,

there is increase in the number of correctly predicted data if the permissible relative error is

increased.

As a second step the prediction algorithm is run for prediction of fC and fF . In this step the

data is divided in four categories according to the values of q1. Referring table 1, we know that

we only have 4 different values of q1. Therefore we have four categories of data in this step.
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Cumulative probability of correct prediction of fC and fF for different permissible relative error

is plotted in figure 17 to figure 20 for four different categories. In this step also, we have a

convergence of cumulative probability to 1 with the increase of permissible error. In this work,

we take the permissible relative error as 0.25 for both steps.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Perssible relative error

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty
Variation of cumulative probability with relative error for trainning data

q
1

N

f
N

Figure 15 Cumulative probability of correct prediction of q1, εN and fN for training data with
different permissible relative error of prediction
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Figure 16 Cumulative probability of correct prediction of q1, εN and fN for training data with
different permissible relative error of prediction
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Figure 17 Cumulative probability of correct prediction of fC and fF for category 1 (i.e. q1= 1.0)
with different permissible relative error of prediction
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Figure 18 Cumulative probability of correct prediction of fC and fF for category 2 (i.e. q1= 1.2)
with different permissible relative error of prediction
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Figure 19 Cumulative probability of correct prediction of fC and fF for category 3 (i.e. q1= 1.4)
with different permissible relative error of prediction
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Figure 20 Cumulative probability of correct prediction of fC and fF for category 4 (i.e. q1= 1.6)
with different permissible relative error of prediction
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4.3 Model validation results

In this section, a relation of two steps of data analysis method is established through imple-

mentation of statistical tool. Firstly, for different categories (i.e. for different values of q1) and

different values of εN and fN probability of having a specific value of fC or fF is calculated.

In section 3.5, this term is already mentioned as posterior probability. The posterior probability

is calculated for the generated 960 data and the for the predicted test data. Thereafter, the

relative error of these two values are calculated. From figure 21 to figure 24 show the relative

error of posterior probability for fC and from figure 25 to figure 28 show the relative error in

posterior probability for fF . These results are shown for the first loop of iteration, as mentioned

in section 3.5. Thereafter the first loop of iteration is run for 50 times by randomly choosing

80% of data out of 960 data as the training set of data.

Relative error of

posterior probability for fC
=

P (fC |q1, εN , fN )960 data − P (fC |q1, εN , fN )predicted data

P (fC |q1, εN , fN )960 data

Relative error of

posterior probability for fF
=

P (fF |q1, εN , fN )960 data − P (fF |q1, εN , fN )predicted data

P (fF |q1, εN , fN )960 data

(4.1)

0.1 0.2 0.3

N

0.01

0.02

0.03

0.04

f N

categorie1 (q
1
 =1)

0

1

2

0.1 0.2 0.3

N

0.01

0.02

0.03

0.04

f N

categorie2 (q
1
 =1.2)

0

1

2

0.1 0.2 0.3

N

0.01

0.02

0.03

0.04

f N

categorie3 (q
1
 =1.4)

0

1

2

0.1 0.2 0.3

N

0.01

0.02

0.03

0.04

f N

categorie4 (q
1
 =1.6)

0

1

2

Figure 21 Variation of relative error of posterior probability of fC=0.1 over the whole region on
εN and fN for different categories
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Figure 22 Variation of relative error of posterior probability of fC=0.12 over the whole region on
εN and fN for different categories
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Figure 23 Variation of relative error of posterior probability of fC=0.14 over the whole region on
εN and fN for different categories
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Figure 24 Variation of relative error of posterior probability of fC=0.16 over the whole region on
εN and fN for different categories
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Figure 25 Variation of relative error of posterior probability of fF=0.2 over the whole region on
εN and fN for different categories
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Figure 26 Variation of relative error of posterior probability of fF=0.3 over the whole region on
εN and fN for different categories
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Figure 27 Variation of relative error of posterior probability of fF=0.4 over the whole region on
εN and fN for different categories
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Figure 28 Variation of relative error of posterior probability of fF=0.5 over the whole region on
εN and fN for different categories

Figure 29 and 30 shows the number of data fitting the condition of a relative error of poste-

rior probability to be less than 0.25. This can also be interpreted as the number of correctly

predicted data for the first loop of iteration

4.4 Further work

In order to get a better percentage of correctly predicted data, the present algorithm can be

extended with a iteration loop as suggested in figure 7. In the next iteration step, the algorithm

has to generate more data for the wrongly predicted data from the previous step of iteration.

0 5 10 15 20 25 30 35 40 45 50

experiment number

0

20

40

60

80

100

%
 o

f c
or

re
ct

ly
 p

re
di

ct
io

n

Correctly predicted fC for category1

0 5 10 15 20 25 30 35 40 45 50

experiment number

0

20

40

60

80

100

%
 o

f c
or

re
ct

ly
 p

re
di

ct
io

n

Correctly predicted fC for category2

0 5 10 15 20 25 30 35 40 45 50

experiment number

0

20

40

60

80

100

%
 o

f c
or

re
ct

ly
 p

re
di

ct
io

n

Correctly predicted fC for category3

0 5 10 15 20 25 30 35 40 45 50

experiment number

0

20

40

60

80

100

%
 o

f c
or

re
ct

ly
 p

re
di

ct
io

n

Correctly predicted fC for category4

Figure 29 Percentage of correctly predicted data in terms of fC for different experiments
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Figure 30 Percentage of correctly predicted data in terms of fF for different experiments

In the next step of iteration, the same algorithm can be run and the predicted data can be

validated using posterior probability. During the present work, 5024 data are created for the

next iteration step as a first step of this further work.
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